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ABLATION & OTHER EXPERIMENTS

Revolutionizing novel view synthesis, 3D Gaussian Splatting has Geometry evaluation

unlocked new horizons in 3D visual representation. Despite the
efficiency and impressive rendering capabilities of GS, the
accurate inverse rendering of reflective non-Lambertian surfaces
remains a significant challenge, particularly in the context of
diverse reflective materials settings, leading to inconsistent
renderings and undermining the technology's potential in
applications ranging from digital asserts production to virtual
reality. We propose Semantic-Guided Gaussian Splatting (SGGS),
which aims to address this challenge by leveraging the
capabilities of semantic features derived from cutting-edge 2D
foundation models, revolutionizing material properties optimization
for Gaussians. By infegrating this high-level understanding, we
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OBJECTIVES

Fig. 2. Overview of our method. Our model begins by feeding source images into the LSeg encoder[24], which then produces corresponding semantic maps.

Following this, we adopt distillation techniques to construct a feature field. Subsequently, we establish a material dictionary that transforms this feature field
into material attributes for every individual Gaussian. These attributes, combined with a learnable environment map and the scene geometry after consistency

constraints, facilitate splatting and deferred shading procedure that ultimately yields the final rendered image.
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Our experiments systematically demonstrate that SGGS outpertorms previous methods in terms of both rendering quality and geometry. Step: 12
Fig. 3. Our method exhibits a rapid convergence rate, which is achieved
. through its sophisticated semantic comprehension of scenes.
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Fig. 1. Our model initiates ingesting multi-view images in conjunction with PGSR
their corresponding feature maps and a trainable environment map. Ultimately, , , , ,
it constructs a Gaussian splatting representation that decouples geometry, Shiny Blender[22] - semantic-Guided Gaussian Splatting
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SGGS revolutionizes the optimization of material properties of
Gaussians, leading to more accurate and realistic rendering.
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